
One Data Model
Semantic Definitions for 

Connected Things

July 18, 2020



What is One Data Model?

• A loose organization of SDOs, Device vendors, IoT 
Platform operators, and IoT experts

• Goal is to harmonize IoT semantic models across 
SDOs and vendors

• Heavy participation from connected home sector

• Initially – a common "language" for IoT semantic 
models, usable by application domain experts

• Eventually – convergence of semantic definitions for 
common IoT device types, broad adoption of the 
language



History

• Emerged from Zigbee "Hive" meeting, fall 2018

• Cross-industry consensus on lack of common IoT 
data models as a key inhibitor to IoT growth

• Broad industry group of SDOs and vendors

• No legal organization – working under a liaison

• Weekly teleconferences, 4 face to face meetings in 
2019, “OneDM conference” online in May 2020

• Working in a github repository

• Language, tools, and models



Process 

• Create a common representation language (SDF) for 
existing IoT data and interaction models
• Enable contribution of the best existing models across all 

participating organizations

• Collect a set of representative models for a 
"pressure test" of the language
• Convert to the new language and note any gaps

• Organizations contribute models for evaluation
• Process for selecting a single model per function, e.g. 

lighting, door lock, thermostat

• Publication of selected models



Status 

• Weekly technical meetings since December 2018

• Four face to face meetings

• Diverse models are being used to test the language

• At the October 2019 Face to Face meeting we 
approved a version of the modeling language to 
proceed with contributions 

• July 2020: oneDM public
• SDF standardization in IETF (ASDF BOF created)

• Playground contains 200+ contributed SDF models from 
Bluetooth, OCF, OMA, Zigbee ecosystems



Outcomes 

• All participants have agreed to publish the models under 
the BSD 3-Clause Open Source license

• 2-way translation between OMA LWM2M XML models 
and the SDF language

• 2-way translation between OCF OAS2.0 models and the 
SDF language

• Initial SDF models for Zigbee cluster available

• Initial SDF models for Bluetooth available

• OCF may use the SDF language as the "entry point" for 
developers to create and maintain data models
• Automatic mapping to OCF styled Swagger definitions



What is a semantic model – Practical IoT 
Semantics

• Abstract meta-model for IoT device affordances, 
behavior, and context
• Decoupled from network bindings, protocol-agile

• Common categories for affordances 

• Common categories for constraints

• Common format for definitions

• Initial focus on affordances to normalize device-
facing interactions across SDOs and vendors

• Behavioral and contextual models also are needed 
but not in the initial scope



SDF Architecture

• Meta-model

• SDF Classes
• sdfData

• sdfProperty, sdfAction, sdfEvent

• sdfObject

• sdfThing



SDF Meta-Model

• Thing Class to 
compose Objects

• Reusable Objects
• Property, Action, 

and Event 
Affordances

• Reusable Data Types



sdfProperty

• Elements that represent the state of a connected 
thing – direct affordance to instances of Data Types

• Read and Write meta-operations on Data elements

• Read meta-operation returns the representation of 
state

• Write meta-operation uses a supplied 
representation to update state

• For example, the operational mode of a thermostat



sdfAction

• Affordance, usually to control a physical world 
effector that is associated with a connected thing

• Also can be used to emulate function calls

• Invoke meta-operation with zero or more input data 
parameters

• Output data returns information including status of 
long running actions

• E.g. locking or unlocking a door lock



sdfEvent

• An affordance to obtain happenings associated with 
the connected thing, often to receive asynchronous 
or unsolicited notification messages

• Subscribe meta-operation to map to most 
protocols, e.g. CoAP Observe, MQTT Subscribe, 
HTTP long poll or eventSource

• Could be notifications of state changes, also alerts 
and alarms

• Output data contains state or application messages



sdfData

• Reusable definitions for data types – curated sub-
/superset of json-schema.org formats

• May use the same sdfData definition for 
sdfProperty as for sdfAction input data, sdfEvent 
output data

• Defines a semantic type, e.g. temperatureData, and 
basic data type (number, string, boolean), with 
additional constraints (enum, minimum, maximum, 
number of decimal places, etc.), and associations 
with quantities and units

• Well known types for date, time, URL, UID, etc.



sdfObject

• A collection of Properties, Actions, and Events

• Work together to perform some discrete function

• On/off switch, light dimming, color control, door 
lock/unlock

• sdfObject is the main point of commonality for 
interoperability

• Similar functional sdfObjects have similar 
affordances

• Defines minimum required set of affordances



sdfThing

• A collection of sdfObjects and sdfThings that work 
together in a complementary way

• A light control thing may have on/off switch control, 
dimming control, and color control objects

• A product thing may have several light things and 
other types of things, allowing for nested modular 
composition patterns



SDF Language Design Review

• Overview – Functional structure

• Definitions and Declarations

• References using JSON Pointer

• Processing model – namespaces and files

• High Level Composition



SDF Design Overview

• JSON-based DSL – syntax defined in CDDL and also 
compiled to json-schema.org form

• Associates semantic terms with type definitions of 
SDF classes

• Example sdfObject definition for a simple binary 
(on/off) switch control
• The sdfObject for "Switch" object has three affordances:
• sdfProperty for state "value" with a defined string enum 

allowing "on" and "off" values
• sdfActions for "on" and "off" (that implicitly act on the 

"State" Property)



SDF - Simple Definition Format{

"info": {

"title": "Example file for sdf Simple JSON Definition Format",

"version": "20190404",

"copyright": "Copyright 2019 Example Corp. All rights reserved.",

"license": "http://example.com/license"

},

"namespace": {

"mynamespace": "http://example.com/capability/sdf#"

},

"defaultNamespace": "st",

"sdfObject": {

"Switch": { 

"sdfProperty": {

"value": {

"type": "string",

"enum": ["on", "off"]

}

},

"sdfAction": {

"on": {},

"off": {}

}

}

}

}



Simple example – Info and 
namespace definitions

"info": {

"title": "Example file for sdf Simple JSON Definition Format",

"version": "20190404",

"copyright": "Copyright 2019 Xcorp, Inc. All rights reserved.",

"license": "http://example.com/license"

},

"namespace": {

"ocf": "http://example.org/ocf/sdf",

"mynamespace": "http://example.com/capability/sdf"

},

"defaultNamespace": "mynamespace",

curies resolved

File Informationkeywords



Definitions

"sdfObject": {

"Switch": {

"sdfProperty": {

"value": {

"type": "string",

"enum": ["on", "off"]

}

},

"sdfAction": {

"on": {},

"off": {}

}

}

}

SDF keywords

Terms 
defined in 
the Default 
Namespace



Definitions

• A definition consists of a defined term and a map of 
it's defined qualities

• json-schema.org style syntax is used for sdfProperty 
and sdfData constraint qualities

"value": {

"type": "string",

"enum": ["on", "off"]

}



Declarations

• A Declaration in SDF is some use of a defined term 

• Usually in another definition, through reuse of 
definitions

• A declaration can also be an inline definition, within 
another definition

• In the above example, "value" is a definition with its 
own declared qualities, as well as a declaration within 
the "Switch" definition

• Are statements about qualities in a definition also 
declarations?



SDF References

• The defined qualities, and the semantic identity, of 
a definition can be re-used in a new definition

• For example, a common definition for Transition 
Time Data can be used for timing parameters of 
different Actions in a lighting control model

• Reuse of definitions in SDF models is achieved 
through references, using JSON Pointer syntax 
(RFC6901)



sdfRef keyword

• Functions in a similar way as #ref in json-
schema.org

• Can be thought of as copying the qualities of the 
referenced definition into the current definition

• Additional qualities may be defined, e.g. semantic 
tagging, in the current definition



sdfRef Example

"sdfData": {

"transitiontimedata": {

"type": "number", 

"widthInBits": 16, 

"minimum": 0, 

"maximum": 65535, 

"multipleOf": 1, 

"unit": "seconds", 

"scaleMinimum": 0, 

"scaleMaximum": 6553.5

}

}

"OnOffTransitionTime": {

"sdfRef": "#/sdfData/transitiontimedata", 

"name": "On Off Transition Time", 

"default": 0

}, 

Definition

Declaration



Processing Model – Files and 
Namespaces

• Multiple SDF files are expected to be submitted to 
populate a namespace

• The defaulNamespace declaration in each SDF file 
determines the destination namespace location of 
the definitions that are in the file

• Lookup operations on the namespace will behave as 
if there is one file that contains all of the definitions 
in that namespace

• Accepting a definition file into a namespace is 
agreeing to roll it into the single file image



Data Type Definition

{

"info": {

"title": "Example sdf Data Type definition", 

"version": "20190504", 

"copyright": "no copyright", 

"license": "not licensed"

}, 

"namespace": {

"zcl": "http://example.com/zcl/sdf#"

}, 

"defaultNamespace": "zcl", 

"sdfData": {

"transitiontimedata": {

"type": "number", 

"widthInBits": 16, 

"minimum": 0, 

"maximum": 65535, 

"multipleOf": 1, 

"unit": "seconds", 

"scaleMinimum": 0, 

"scaleMaximum": 6553.5

}

}

}



Example use of definition from a 
namespace

"namespace": {

"zcl": "http://example.com/zcl/sdf#"

}, 

"MoveToTiltTransitionTime": {

"sdfRef": “zcl:/sdfData/transitiontimedata", 

"name": "Move To Tilt Transition Time", 

"default": 0

}, 

• Reference doesn't need to know about file names 
or how a definition was contributed

• Namespace prefix in the reference is expanded to a 
URL prefix before JSON Pointer processing



Other use of JSON Pointer in SDF
• Indicate sub-sets of definitions that are required or 

designated as input or output data

"sdfAction": {

"MoveToLevel": {

"name": "Move to Level", 

"sdfRequired": [

"#/sdfData/level", 

"#/sdfData/transitiontime"

],

"sdfInputData": [

"#/sdfData/level", 

"#/sdfData/transitiontime"

],

"sdfData": {

"level": {

"name": "Level", 

"type": "number", 

"widthInBits": 8, 

"minimum": 0, 

"maximum": 254

}, 

"transitiontime": {

"name": "Transition Time", 

"sdfRef": 

"#/sdfData/transitiontimedata"

}



Next steps

• Standardize the language at IETF

• Update the language, e.g. more features

• Model convergence across vendors, SDOs

• Demonstration based on translation and gateway


